

Figure 3. Same plot as in Figure 2, but for $E_{\mathrm{s}}=0.8 \mathrm{eV}$. Other parameters as in Figures 1 and 2.
myoglobins, ${ }^{30,31}$ while Figure 3 corresponds to a somewhat smaller reorganization free energy.
(2) Inclusion of the modulation effects also shifts the whole free energy plot horizontally toward lower values without sig. nificant changes of its shape (Figures 2 and 3). For the data in ref $31(R=12 \AA)$, the shift would amount to $0.15-0.20 \mathrm{eV}$ but
would be expected to be larger for free energy relations based on substitution at more remote sites from the heme group.

Free energy relations based on Ru modification at different histidines might offer a new perspective also for illumination of environmental modulation of the electronic factor in electrontransfer theory. At the same time the continuum formalism used, ${ }^{24-26}$ which can be extended to solvent structural effects in the form of vibrational and spatial dielectric dispersion, is a useful frame for incorporation of large numbers of solvent molecules and nonequilibrium solvation effects for which quantum chemical approaches are not feasible. On the basis of this formalism, a family of almost parallel free energy plots would be expected when the Ru fragments are attached to different His sites. These plots are shifted to lower reaction free energies with increasing elec-tron-transfer distance, and the equilibrium values of the electronic parameters can, in principle, be extracted from the shifts.

Acknowledgment. We thank Julie Damms Studiefond and Otto Monsteds Fond for financial support.

Structure and Reactivity of Titanium/Platinum and Palladium Heterobinuclear Complexes with μ-Methylene Ligands

Fumiyuki Ozawa, Joon Won Park, Peter B. Mackenzie, William P. Schaefer, Lawrence M. Henling, and Robert H. Grubbs*
Contribution No. 7821 from the Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125. Received July 28, 1988

Abstract

A series of titanium/platinum and palladium heterobinuclear μ-methylene complexes $\mathrm{Cp}_{2} \widehat{\mathrm{TiCH}} \mathbf{2} \mathrm{MX}(\mathrm{Me}) \mathrm{L}$ has been prepared: $\mathrm{M}=\mathrm{Pt}, \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{PMe}_{3}(\mathbf{2 b}), \mathrm{PMe}_{2} \mathrm{Ph}$ (2c), PMePh_{2} (2d); $\mathrm{M}=\mathrm{Pt}, \mathrm{X}=\mathrm{Me}, \mathrm{L}=\mathrm{PMe}{ }_{2} \mathrm{Ph}(\mathbf{2 e}, \mathbf{2 f}) ; \mathrm{M}$ $=\mathrm{Pd}, \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{PMe}_{3}(2 \mathrm{~g})$. The $\mu-\mathrm{CH}_{2} / \mu-\mathrm{Cl}$ complex 2 c crystallizes in the monoclinic system in space group $P 2_{1} / n$ (No. 14), with $a=13.249$ (3) $\AA, b=11.646$ (3) $\AA, c=14.542$ (5) $\AA, \beta=114.45(2)^{\circ}, V=2042.6(10) \AA^{3}, Z=4$, and density $=1.87 \mathrm{~g} \mathrm{~cm}^{-3}$. The $\mu-\mathrm{CH}_{2} / \mu-\mathrm{CH}_{3}$ analogue 2 e is isostructural to 2 c and also crystallizes in space group $P 2_{1} / n$ (No. 14) with $a=13.333$ (4) $\AA, b=11.686$ (2) $\AA, c=14.351$ (2) $\AA, \beta=115.03$ (2) ${ }^{\circ}, V=2026.0$ (8) $\AA^{3}, Z=4$, and density $=1.82 \mathrm{~g}$ cm^{-3}. Structural studies indicate the following: (1) the $\mathrm{Ti}-\mathrm{CH}_{2}$ bond possesses residual double-bond character, (2) there is a dative $\mathrm{Pt} \rightarrow$ Ti interaction, which may be regarded as π back-donation from the platinum atom to the " $\mathrm{Ti}=\mathrm{CH}_{2}$ " group, and (3) the $\mu-\mathrm{CH}_{3}$ group in 2 e is bound to the titanium atom through a three-center, two-electron agostic bond. Complexes 2c and 2 d react with tertiary phosphines to give $\mathrm{Cp}_{2}(\mathrm{Cl}) \mathrm{TiCH}_{2} \mathrm{Pt}(\mathrm{Me}) \mathrm{L}_{2}$ species, which form $\mu-(\mathrm{C}, \mathrm{O})$-ketene complexes $\mathrm{Cp}_{2}(\mathrm{Cl}) \mathrm{TiOC}\left(=\mathrm{CH}_{2}\right) \mathrm{Pt}(\mathrm{Me}) \mathrm{L}_{2}$ upon carbonylation. The palladium complex $\mathbf{2 g}$ undergoes a reductive elimination reaction to give $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{Et}) \mathrm{Cl}$ and $\mathrm{Pd}^{0} \mathrm{PMe}_{3}$ complexes.

Recently much attention has been focused upon early-transi-tion-metal/late-transition-metal heterobinuclear complexes ${ }^{1}$ because of their potential applications in catalytic organic reactions. Also, these complexes have been studied in order to gain an

[^0]understanding of the phenomenon of so-called "strong metalsupport interactions (SMSI)" in heterogeneous catalysis. ${ }^{2}$ It is well documented that late transition metals, which are finely dispersed on early-transition-metal oxide supports such as TiO_{2} and ZrO_{2}, serve as highly active catalysts in the catalytic hydrogenation of carbon monoxide. SMSI have been observed in such systems. While the exact nature of the interaction is still unclear, SMSI are regarded as the prime reason for the enhanced catalytic activity. ${ }^{3}$

[^1]Table I. NMR Data for the μ-Methylene Complexes

${ }^{a}$ All data are recorded at room temperature unless otherwise noted. Solvent: benzene- d_{6} (2c, 2e, 2f), toluene- d_{8} (2b, 2d, 2g), toluene- $d_{8} /$ THF- d_{8} $=3 / 1\left(2 \mathrm{e}, \mathbf{2 f}\right.$ at $\left.-82^{\circ} \mathrm{C}\right) .{ }^{b}$ Chemical shift is referred to an external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ standard (downfield positive). ${ }^{c}$ Coupling constant is obscure due to broadening. ${ }^{d}$ See ref 5 c .

Key intermediates in heterogeneous CO hydrogenation are μ-methylene species. ${ }^{4}$ We recently developed a convenient synthetic route to titanium/late-transition-metal μ-methylene complexes. These complexes serve as possible models for surface methylene species on catalysts that exhibit the SMSI phenomenon. ${ }^{5}$ Reactions of the " $\mathrm{Cp}_{2} \mathrm{Ti}=\mathrm{CH}_{2}$ " species generated from bis(cyclopentadienyl)titanacyclobutanes or Tebbe's reagent with late-transition-metal chlorides ($\left.\mathrm{L}_{n} \mathrm{MCl}\right)$ give a new class of μ methylene complexes $\mathrm{CP}_{2} \mathrm{TiCH}_{2} \mathrm{M}(\mathrm{Cl}) \mathrm{L}_{n}$ (2). ${ }^{\text {sb }}$ Anion exchange of the $\mu-\mathrm{Cl}$ ligand in $\mathbf{2}$ with MeMgBr or MeLi forms $\mu-\mathrm{CH}_{2} / \mu$ CH_{3} complexes. ${ }^{\text {5c }}$ These methods have enabled us to study a wide variety of early/late heterobinuclear complexes with μ-methylene ligands.

In this paper we describe the structure and reactivity of titanium/platinum and palladium μ-methylene complexes Cp_{2} $\mathrm{TiCH}_{2} \mathrm{MX}(\mathrm{Me}) \mathrm{L}(\mathrm{M}=\mathrm{Pt}, \mathrm{Pd} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Me} ; \mathrm{L}=$ tertiary phosphine ligands). X-ray diffraction studies on the platinum

[^2]compounds have suggested that the $\mathrm{Ti}-\mathrm{CH}_{2}$ bond is intermediate in character between a single and a double bond, while the $\mathrm{Pt}-\mathrm{CH}_{2}$ bond exhibits both σ - and π-bonding properties. These bonding features are demonstrated in the reactions of these complexes with tertiary phosphines. The μ-methylene complexes react in the manner expected for surface methylene species in CO-hydrogenation systems. Thus, the platinum $\mu-\mathrm{CH}_{2} / \mu-\mathrm{Cl}$ complexes represent the first example of carbonylation of a μ-methylene species to afford a μ-(C,O)-ketene complex. ${ }^{6}$ The Ti/Pd complex undergoes a coupling reaction between the terminal methyl and μ-methylene ligands. This type of reaction is assumed to initiate chain growth in the Fischer-Tropsch reaction.?

Results

Synthesis of μ-Methylene Complexes. The μ-methylene complexes prepared in this study are listed in Table I. Reaction of bis(cyclopentadienyl)titanacyclobutane (1) with $\mathrm{PtMeCl}\left(\mathrm{SMe}_{2}\right)_{2}$ in toluene affords a μ-methylene $/ \mu$-chloride complex with a SMe_{2}

[^3]

Figure 1. ORTEP diagram of complex $\mathbf{2 c}$. The ellipsoids are drawn at the 50% probability level except for the hydrogen atoms. The hydrogen atoms of the cyclopentadienyl, terminal methyl, and $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands are omitted for clarity.
ligand (2a) along with the evolution of a quantitative amount of isobutylene. ${ }^{\text {sb }}$

(1)
(2a)

Treatment of $\mathbf{2 a}$ with tertiary phosphines at room temperature gives phosphine-coordinated complexes $\mathbf{2 b} \mathbf{- 2 d}$ in quantitative yields as confirmed by NMR spectroscopy. The palladium analogue $\mathbf{2 g}$ is prepared by reaction of $\mathbf{1}$ with $\left[\mathrm{PdMe}(\mu-\mathrm{Cl}) \mathrm{PMe}_{3}\right]_{2}$. Compounds $2 \mathrm{c}, \mathbf{2 d}$, and 2 g have been isolated as red crystals and $\mathbf{2 b}$ as a spectroscopically pure, oily material.

The bridging chloride ligand in $\mathbf{2 c}$ is readily replaced by the methyl group of MeMgBr at room temperature to give the μ $\mathrm{CH}_{2} / \mu-\mathrm{CH}_{3}$ complex 2 e , which has been isolated as reddish orange

crystals. This reaction proceeds with retention of the original configuration about the platinum center, while on prolonged reaction 2 e is isomerized to its geometrical isomer $\mathbf{2 f}$. The isomerization is a significantly slower process in the absence of MeMgBr , suggesting a MeMgBr -promoted isomerization reaction. ${ }^{8}$

NMR Data. The 'H and ${ }^{13} \mathrm{C}$ NMR resonances for the $\mu-\mathrm{CH}_{2}$ group appear in the typical regions reported for binuclear μ methylene complexes (Table I). ${ }^{4 \mathrm{a}}$ The ${ }^{1} J_{\mathrm{CH}}$ values are in the range of $135 \pm 3 \mathrm{~Hz}$; the values are intermediate between those for pure sp^{2} and sp^{3} carbons. ${ }^{9}$ The geometries at platinum and palladium in the phosphine-coordinated complexes have been determined on the basis of coupling constants between phosphorus and carbons

[^4]

Figure 2. ORTEP diagram of complex 2e. The ellipsoids are drawn at the 50% probability level except for the hydrogen atoms. The hydrogen atoms of the cyclopentadienyl, terminal methyl, and $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands are omitted for clarity.

Table II. Crystal and Intensity Collection Data

Complex 2c

formula: $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{ClPPtTi}$
cryst color: orange-red
$a=13.249$ (3) \AA
$b=11.646$ (3) \AA
$c=14.542 \AA$
$V=2042.6(10) \AA^{3}$
$\lambda=0.71073 \AA$
graphite monochromator
space $\mathrm{gp}: P 2_{1} / n$
cryst size: $0.24 \times 0.13 \times 0.04 \mathrm{~mm}$
CAD-4 diffractometer
2θ range: $2-40^{\circ}$
no. reflens measd: 3837
no. of independent reflcns: 1900
no. with $F_{0}^{2}>0: 1717$
no. with $F_{0}{ }^{2}>3 \sigma\left(F_{0}^{2}\right): 1233$
goodness of fit for merging data: 1.07
final R index: 0.0621
$\left(0.035\right.$ for $\left.F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)\right)$
final goodness of fit: 1.15
formula: $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{PPtTi}$
cryst color: orange-red
$a=13.333$ (4) \AA
$b=11.686$ (2) \AA
$c=14.351(3) \AA$
$V=2026.0(8) \AA^{3}$
$\lambda=0.7107 \AA$
graphite monochromator
space gp: $P 2_{1} / n$
cryst size: $0.42 \times 0.14 \times 0.15 \mathrm{~mm}$
CAD-4 diffractometer
2θ range: $2-50^{\circ}$
no. reflens measd: 8745
no. of independent reflcns: 3540
no. with $F_{0}^{2}>0$: 3308
no. with $F_{0}^{2}>3 \sigma\left(F_{0}^{2}\right): 2614$
goodness of fit for merging data: 0.99
final R index: 0.0394
$\left(0.0242\right.$ for $F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$)
final goodness of fit: 1.12
bound to the metal. ${ }^{10}$ The carbon that is trans to the phosphine ligand gives relatively large ${ }^{2} J_{\mathrm{CP}}$ values $(51-88 \mathrm{~Hz})$, whereas carbons in cis positions show a small coupling ($<10 \mathrm{~Hz}$) with the phosphorus. In the ${ }^{1} \mathrm{H}$ NMR spectra of 2 e and 2 f at $-82^{\circ} \mathrm{C}$, the

[^5]Table III. Final Positional Parameters

atom	x	y	z	$\begin{aligned} & U_{\text {eqe }}^{a}\left(\times 10^{4}\right) \\ & \text { or } B^{b} \end{aligned}$	atom	x	y	z	$\begin{aligned} & U_{\text {eq }}{ }^{a}\left(\times 10^{4}\right) \\ & \text { or } B^{b} \end{aligned}$
Complex 2c									
Pt	2130 (0.5)	1353 (0.5)	60 (0.5)	446 (1)	C10	1083 (14)	-1955 (14)	506 (12)	663 (53)
Ti	2268 (2)	1594 (2)	-1912 (2)	451 (7)	Cpl	3640 (15)	2134 (20)	-2440 (16)	937 (78)
Cl	2061 (4)	-150 (3)	-1092 (3)	598 (12)	Cp2	3729 (13)	969 (15)	-2371 (13)	678 (56)
P	2203 (3)	91 (3)	1268 (3)	510 (12)	Cp3	4102 (13)	738 (15)	-1312 (15)	717 (64)
C1	2156 (13)	2736 (14)	-870 (13)	557 (50)	Cp4	4179 (13)	1766 (19)	-809 (12)	710 (63)
C2	2181 (12)	2658 (13)	1047 (11)	663 (50)	Cp5	3920 (15)	2657 (14)	-1541 (22)	960 (95)
C3	3514 (12)	165 (12)	2408 (10)	798 (60)	Cp6	748 (14)	2729 (13)	-2995 (14)	732 (65)
C4	1178 (13)	274 (12)	1777 (11)	817 (51)	Cp7	311 (13)	1811 (16)	-2663 (12)	636 (51)
C5	2112 (12)	-1440 (12)	947 (10)	521 (40)	Cp8	494 (14)	828 (13)	-3115 (13)	673 (55)
C6	3037 (12)	-2058 (14)	1028 (12)	658 (51)	Cp9	1128 (14)	1125 (15)	-3641 (11)	706 (58)
C7	2959 (15)	-3185 (15)	732 (13)	804 (65)	Cpl0	1272 (14)	2301 (16)	-3568 (13)	748 (59)
C8	1923 (20)	-3658 (15)	311 (12)	854 (62)	HCla	2811 (86)	3273 (85)	-495 (78)	5.0^{6}
C9	983 (15)	-3084 (18)	193 (14)	957 (70)	HClb	1571 (101)	3070 (100)	-995 (105)	$5.0^{\text {b }}$
Complex 2e									
Pt	2178 (0.2)	1307 (0.2)	-4 (0.1)	396	Cp2	3707 (5)	937 (7)	-2380 (5)	663 (18)
Ti	2287 (0.7)	1541 (0.7)	-1883 (0.6)	385 (0.2)	Cp3	4103 (5)	673 (6)	-1338(5)	609 (17)
P	2246 (1)	16 (1)	1213 (1)	454 (3)	Cp4	4219 (5)	1683 (7)	-810 (6)	716 (20)
Cl	2195 (6)	2759 (5)	-832 (5)	562 (16)	Cp5	3933 (6)	2583 (7)	-1514 (8)	840 (24)
C2	2216 (5)	2580 (5)	1051 (4)	702 (16)	Cp6	751 (6)	2652 (6)	-2967 (5)	669 (19)
C3	3552 (6)	81 (8)	2367 (5)	726 (21)	Cp 7	304 (5)	1746 (6)	-2618 (5)	646 (17)
C4	1214 (7)	203 (8)	1726 (6)	704 (19)	Cp8	494 (5)	738 (6)	-3012 (5)	609 (17)
C5	2128 (4)	-1509 (5)	898 (4)	460 (13)	Cp 9	1072 (5)	997 (6)	-3601 (5)	605 (17)
C6	3055 (6)	-2161 (6)	1033 (5)	600 (16)	Cpl0	1217 (6)	2190 (6)	-3581 (5)	654 (19)
C7	2973 (7)	-3289 (7)	758 (6)	760 (20)	HCla	1535 (42)	3175 (41)	-1048 (37)	3.6 (12) ${ }^{\text {b }}$
C8	1969 (8)	-3814 (7)	314 (5)	810 (23)	HClb	2804 (40)	3259 (41)	-460 (36)	3.5 (12) ${ }^{\text {b }}$
C9	1044 (8)	-3201 (7)	177 (6)	818 (24)	HC11a	2719 (47)	-503 (50)	-575 (44)	4.7 (17) ${ }^{\text {b }}$
C10	1102 (6)	-2056 (6)	455 (5)	634 (17)	HC11b	2233 (38)	-76 (39)	-1649 (38)	3.6 (11) ${ }^{\text {b }}$
C11	2156 (7)	-103 (6)	-944 (5)	541 (16)	HCllc	1482 (54)	-510 (52)	-1043 (47)	$5.8(18)^{\text {b }}$
Cpl	3630 (6)	2105 (8)	-2476 (7)	782 (22)					

${ }^{a} U_{\text {eq }}=1 / 3 \sum_{i} \sum_{j}\left[U_{i j}\left(a_{i}{ }^{*} a_{j}{ }^{*}\right)\left(\vec{a}_{i} \cdot \vec{a}_{j}\right)\right]$. ${ }^{b}$ Isotropic displacement parameter, B
protons in the bridging methyl group are observed as two sets of signals, doublet and triplet, in a $2: 1$ ratio with geminal coupling between the protons, which coalesce into a broad singlet at elevated temperatures. As seen from the X-ray structure of $\mathbf{2 e}$ described below, the appearance of two sets of signals at low temperature is ascribed to the presence of an agostic interaction between the methyl group and the titanium atom. A similar bonding pattern has been observed for $\mathrm{Cp}_{2} \widehat{\mathrm{TiCH}} \mathrm{R}_{2} \mathrm{Rh}\left(\mathrm{CH}_{3}\right)(\mathrm{COD})(\mathrm{COD}=1,5$ cyclooctadiene). ${ }^{\text {sc }}$

X-ray Structures. Complexes 2c and 2 e have been subjected to single-crystal X-ray diffraction studies. Details of data collection are summarized in Table II. Positional parameters for nonhydrogen atoms and refined hydrogen parameters are given in Table III. Selected bond lengths and bond angles are listed in Table IV. As seen from the ORTEP diagrams (Figures 1 and 2), both complexes have similar structures. The four central atoms- Ti, Pt, the μ-methylene carbons (Cl), and the other bridging atom (Cl in 2 c or μ-methyl Cll in $\mathbf{2 e}$)-form a fourmembered ring lying approximately in a plane with a methylene hydrogen and a Cp ring above and below the plane. The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle of the $\mu-\mathrm{CH}_{2}$ group is normal for binuclear μ-methylene complexes. ${ }^{4 a}$ The plane comprised of the methylene carbon and the two methylene hydrogens is tilted toward the platinum (Figure 3). The coordination geometry about titanium is pseudotetrahedral, whereas the platinum is basically in a square-planar environment.

Structure of $\mathbf{2 e}$. The μ-methyl group forms a three-center, two-electron agostic bond with the titanium atom. The distance between titanium and the agostic hydrogen $\mathrm{HCllb}(1.93$ (5) \AA) is shorter than that in $\mathrm{Cp}_{2} \mathrm{TiCH}_{2} \mathrm{Rh}\left(\mathrm{CH}_{3}\right)(\mathrm{COD})(2.02$ (6) \AA), whereas the $\mathrm{Ti}-\mathrm{CH}_{2}$ bond (2.395 (8) \AA) is longer than that in the $\mathrm{Ti} / \mathrm{Rh}$ analogue (2.294 (6) \AA). ${ }^{5 \mathrm{~b}}$ The $\mathrm{Ti}-\mathrm{Pt}$ distance is 2.776 (1) \AA, which is short enough to form a dative $\mathrm{Pt} \rightarrow$ Ti bond.' The presence of a $\mathrm{Pt}-\mathrm{Ti}$ bond is reflected in the narrow $\mathrm{Ti}-\mathrm{C}_{1}-\mathrm{Pt}$ angle (82.9(3) ${ }^{\circ}$); the magnitude of this angle is typical of binuclear μ-methylene complexes with a metal-metal bond. ${ }^{4 a}$ The $\mathrm{Pt}-\mathrm{CH}_{2}$ bond (2.078 (7) \AA) is slightly shorter than those in bis(tertiary phosphine)platinacyclobutanes (2.13-2.15 \AA). ${ }^{14} \quad$ The $\mathrm{Pt}-\mathrm{Me}$

Figure 3. Comparison of the cores of complexes $\mathbf{2 c}(-)$ and $\mathbf{2 e}(--)$. The square mark (ם) shows the intermediate point of the two $\mu-\mathrm{CH}_{2}$ hydrogens. The distances are given in angstroms and the angles in degrees. The information in brackets is for $\mathbf{2 e}$.
bridging ($2.122(8) \AA$) and terminal ($2.108(6) \AA$) bond lengths are in the typical range of a $\mathrm{Pt}-\mathrm{Me}$ bond having a trans ligand with a large trans influence. ${ }^{12}$ The $\mathrm{Ti}-\mathrm{CH}_{2}$ distance (2.115 (7) \AA) is slightly shorter than that in $\mathrm{Cp}_{2} \overparen{\mathrm{TiCH}}_{2} \mathrm{C}(\mathrm{Me})_{2} \mathrm{CH}_{2}(2.16$ $\AA)^{13}$ but much longer than the calculated distance for the $\mathrm{Ti}=\mathrm{CH}_{2}$ double bond ($1.85-1.88 \AA$). ${ }^{14}$
(11) (a) Yarrow, D. J.; Ibers, J. A.; Lenarda, M.; Graziani, M. J. Organomet. Chem. 1974, 70, 133. (b) Rajaram, J.; Ibers, J. A. J. Am. Chem. Soc. 1978, 100, 829. (c) Lenarda, M.; Pahor, N. B.; Calligaris, M.; Graziani, M.; Randaccio, L. J. Chem. Soc., Dalton Trans. 1978, 279.
(12) Wisner, J. M.; Bartczak, T. J.; Ibers, J. A.; Low, J. J.; Goddard, W. A., III J. Am. Chem. Soc. 1986, 108, 347.
(13) (a) Straus, D. A.; Grubbs, R. H. Organometallics 1982, l, 1658. (b) Straus, D. A. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1983.
(14) Upton, T. H.; Rappe, A. K. J. Am. Chem. Soc. 1985, 107, 1206.

Table IV. Selected Distances and Angles

distance, \AA A			angle, deg
Complex 2c			
Pt...Ti	2.962 (2)	$\mathrm{C} 1-\mathrm{Pt}-\mathrm{C} 2$	83.1 (6)
$\mathrm{Cl} \ldots \mathrm{Cl}$	3.374 (18)	$\mathrm{Cl}-\mathrm{Pt}-\mathrm{P}$	170.4 (5)
$\mathrm{Pt}-\mathrm{Cl}$	2.399 (4)	$\mathrm{C} 1-\mathrm{Pt}-\mathrm{Cl}$	96.6 (5)
$\mathrm{Pt}-\mathrm{Cl}$	2.112 (17)	$\mathrm{C} 2-\mathrm{Pt}-\mathrm{P}$	87.7 (5)
$\mathrm{Pt}-\mathrm{C} 2$	2.071 (15)	$\mathrm{Pt}-\mathrm{Cl}-\mathrm{Ti}$	75.7 (1)
$\mathrm{Pt}-\mathrm{P}$	2.261 (4)	$\mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl}$	97.0 (5)
$\mathrm{Ti}-\mathrm{Cl}$	2.427 (5)	$\mathrm{CpC1} 1-\mathrm{Ti}-\mathrm{CpC} 2$	132.4
Ti-Cl	2.066 (18)	$\mathrm{Ti}-\mathrm{Cl} 1-\mathrm{Pt}$	90.3 (7)
$\mathrm{Ti}-\mathrm{CpCl}$	2.071	$\mathrm{Pt}-\mathrm{P}-\mathrm{C} 3$	113.0 (5)
$\mathrm{Ti}-\mathrm{CpC} 2$	2.082	Pt -P-C4	116.3 (5)
$\mathrm{Cl}-\mathrm{HCla}$	1.03 (11)	$\mathrm{Pt}-\mathrm{P}-\mathrm{C} 5$	117.2 (5)
$\mathrm{C} 1-\mathrm{HCl}$ b	0.82 (14)	$\mathrm{HCla}-\mathrm{Cl}-\mathrm{HClb}$	110.1 (113)
P-C3	1.842 (16)		
P-C4	1.809 (16)		
P-C5	1.833 (15)		
Pt… HCla	2.66 (11)		
Pt... HClb	2.44 (13)		
Ti... HCla	2.71 (11)		
Ti... HClb	2.57 (13)		
Complex 2e			
$\mathrm{Pt}-\mathrm{Cl}$	2.078 (7)	$\mathrm{Cl}-\mathrm{Pt}-\mathrm{C} 11$	105.7 (3)
$\mathrm{Pt}-\mathrm{Cl1}$	2.122 (8)	$\mathrm{C} 11-\mathrm{Pt}-\mathrm{P}$	87.6 (2)
$\mathrm{Pt}-\mathrm{C} 2$	2.108 (6)	P-Pt-C2	86.3 (2)
$\mathrm{Pt}-\mathrm{P}$	2.279 (2)	$\mathrm{C} 2-\mathrm{Pt}-\mathrm{Cl}$	80.3 (3)
Pt...Ti	2.776 (1)	$\mathrm{C} 1-\mathrm{Ti}-\mathrm{Cl1}$	95.7 (3)
Pt \cdots HCla	2.58 (5)	CpA-Ti-CpB	133.3
Pt...HClb	2.61 (5)	$\mathrm{pt}-\mathrm{Cl}-\mathrm{Ti}$	82.9 (3)
Pt...HC11a	2.48 (6)	$\mathrm{Pt}-\mathrm{Cl} 1-\mathrm{HCla}$	112.1 (32)
Pt...HC11c	2.53 (7)	$\mathrm{Pt}-\mathrm{Cl} 1-\mathrm{HClb}$	113.3 (31)
Pt \cdots HC11b	2.89 (5)	$\mathrm{Ti}-\mathrm{Cl} 1-\mathrm{HCla}$	116.3 (32)
$\mathrm{Ti}-\mathrm{Cl}$	2.115 (7)	Ti-C1-HClb	121.1 (31)
Ti-C11	2.395 (8)	$\mathrm{HCla}-\mathrm{Cl}-\mathrm{HClb}$	109.0 (45)
Ti-CpA	2.081	$\mathrm{Pt}-\mathrm{C} 11-\mathrm{Ti}$	75.6 (2)
Ti-CpB	2.082	$\mathrm{Pt}-\mathrm{C11-HC11a}$	105.1 (42)
Ti..- HCla	2.67 (5)	$\mathrm{Pt}-\mathrm{C} 11-\mathrm{HC11c}$	103.7 (40)
Ti... HClb	2.74 (5)	$\mathrm{Pt}-\mathrm{Cl} 1-\mathrm{HC1} 1 \mathrm{~b}$	127.1 (28)
Ti...HCllb	1.93 (5)	Ti-C11-HC11b	51.7 (27)
Ti...HClla	2.94 (6)	Ti-C11-HC11a	122.3 (42)
Ti... HCl 1 c	3.07 (7)	Ti-C11-HC11c	126.3 (40)
$\mathrm{C} 1 . . \mathrm{C} 1$	3.348 (11)	HC11a-C11HC11b	101.2 (50)
P-C3	1.828 (9)	HC1lb-C11-HC11c	109.3 (48)
P-C4	1.829 (9)	HC11c-C11-HC11a	109.9 (58)
P-C5	1.829 (6)	$\mathrm{Pt}-\mathrm{P}-\mathrm{C} 3$	112.4 (3)
$\mathrm{Cl}-\mathrm{HCla}$	0.94 (5)	$\mathrm{Pt}-\mathrm{P}-\mathrm{C} 4$	115.9 (3)
$\mathrm{Cl}-\mathrm{HClb}$	0.96 (5)	$\mathrm{Pt}-\mathrm{P}-\mathrm{C} 5$	119.0 (2)
C11-HC11a	0.85 (6)		
C11-HC11c	0.97 (7)		
$\mathrm{C} 11-\mathrm{HC11b}$	1.06 (5)		

Structure of 2c. The Ti-Pt distance (2.962 (2) \AA) is significantly longer than that in $\mathbf{2 e}$, but it is still in the range where a weak $\mathrm{Pt} \rightarrow \mathrm{Ti}$ interaction is possible. The $\mathrm{Pt}-\mathrm{CH}_{2}$ distance (2.112 (17) \AA) is slightly longer than that in 2 e and is typical of a $\mathrm{Pt}-\mathrm{C}$ single bond which is trans to a phosphine ligand. ${ }^{12}$ The $\mathrm{Pt}-\mathrm{Me}$ bond length ($2.071(15) \AA$) is comparable with that of trans$\mathrm{PtMeCl}\left(\mathrm{PMePh}_{2}\right)_{2}(2.081(6) \AA) .{ }^{15} \quad \mathrm{The} \mathrm{Pt}-\mathrm{Cl}$ and $\mathrm{Ti}-\mathrm{Cl}$ distances are similar to those of the Cl -bridged compounds. ${ }^{16}$

Reactions. With Tertiary Phosphines. The PMePh_{2}-coordinated complex $2 \mathrm{~d}(0.15 \mathrm{M})$ in THF-d ${ }_{8}$ was treated with PMePh_{2} (2.5 equiv/2d) at $-70^{\circ} \mathrm{C}$. The clear red solution rapidly turned
(15) Benett, M. A.; Chee, H.-K.; Robertson, G. B. Inorg. Chem. 1979, 18, 1061.
(16) (a) Parsons, E. J.; Larsen, R. D.; Jennings, P. W. J. Am. Chem. Soc. 1985, 107, 1793. (b) Whitla, W. A.; Powell, H. M.; Venanzi, L. M. Chem. Commun. 1966, 310. (c) De Renzi, A.; Di Blassio, B.; Paiaro, G.; Panunzi, A.; Pedone, C. Gazz. Chim. Ital. 1976, 106, 765. (d) Struchkov, Yu. T.; Aleksandrov, G. G.; Pukhnarevich, V. B.; Sushchinskaya, S. P.; Voronkov, M. G. J. Organomet. Chem. 1979, 172, 269 . (e) Goel, A. B.; Goel, S.; Vanderveer, D. Inorg. Chim. Acta 1981, 54, L267. (f) Olthof, G. J. J. Organomet. Chem. 1977, 128, 367. (g) Jungst, R.; Sekutowski, D.; Davis, J.; Luly, M.; Stucky, G. Inorg. Chem. 1977, I6, 1645. (h) van der Wal, H. R.; Overzet, F.; van Oven, H. O.; de Boer, J. L.; de Liefde Meijer, H. J.; Jellinek, F. J. Organomet. Chem. 1975, 92, 329. (i) Sekutowski, D.; Jungst, R.; Stucky, G. D. Inorg. Chem. 1978, 17, 1848.

dark red. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra of the solution have revealed a rapid equilibrium between $\mathbf{2 d}$ and a new μ-methylene species with two $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands (3d): [3d]/[2d][PMePh $\left.{ }_{2}\right]=$ $30 \mathrm{M}^{-1}$ at $-60^{\circ} \mathrm{C}$. The NMR data of 3d are listed in Table V. The two sets of doublets with ${ }^{195} \mathrm{Pt}$ satellites in the $\left.{ }^{31} \mathrm{P} \mid{ }^{1} \mathrm{H}\right\}$ NMR spectrum indicate that the platinum center has two PMePh_{2} ligands in a cis orientation. The relatively small ${ }^{1} J_{\mathrm{PIP}}$ values (1795 and 1979 Hz) are within the typical magnitude for cis-dialkylbis(tertiary phosphine)platinum(II) complexes. ${ }^{10}$ The μ-methylene protons and carbon are observed as a slightly broad doublet of doublets at $\delta 5.16$ in the ${ }^{1} \mathrm{H}$ NMR spectrum and at $\delta 158$. 1 in the ${ }^{13} \mathrm{C}$ NMR spectrum. The chemical shifts are considerably higher than those for $\mathbf{2 d}$. The ${ }^{1} J_{\mathrm{CH}}$ value for the $\mu-\mathrm{CH}_{2}$ group (113 Hz) is comparable with that for a typical methylene group in an acyclic hydrocarbon. ${ }^{9}$ Treatment of the equilibrium mixture with dry HCl (1 equiv/ Ti) at $-50^{\circ} \mathrm{C}$ results in the spontaneous conversion of 3 d into the kinetic products, $\mathrm{C}_{2} \mathrm{TiMe}(\mathrm{Cl})$ and trans- $\mathrm{PtMeCl}\left(\mathrm{PMePh}_{2}\right)_{2} ; \mathbf{2 d}$ is fairly stable to HCl under these reaction conditions. These results are consistent with the structure of 3d not including either a metal-metal bond or an additional bridging ligand. ${ }^{17,18}$

A remarkable temperature dependence of the equilibrium (3) has been observed. The $K_{\text {eq }}$ values ([3d]/[2d][PMePh $], \mathrm{M}^{-1}$) in toluene $-d_{8}$ are $7.9\left(-50^{\circ} \mathrm{C}\right), 2.4(-30), 0.69(-10)$, and $0.0(25)$. On the basis of these equilibrium constants, thermodynamic parameters at 223 K are estimated as follows: $\Delta H=-7.1 \mathrm{kcal} / \mathrm{mol}$, $\Delta S=-28 \mathrm{eu} ; \Delta G=-0.92 \mathrm{kcal} / \mathrm{mol}$. The large negative entropy is in accord with a ligand association and the sterically crowded structure of 3 d .

Above room temperature, on the other hand, the system irreversibly forms $\mathrm{Cp}_{2} \mathrm{Ti}\left(=\mathrm{CH}_{2}\right) \mathrm{PMePh}_{2}{ }^{19}$ and trans- $\mathrm{PtMeCl}-$ $\left(\mathrm{PMePh}_{2}\right)_{2}$ (eq 4). The titanocene methylidene species thus

formed instantly decomposes into a paramagnetic titanium species under the reaction conditions.

Complex 2c shows similar reaction patterns in a solution containing $\mathrm{PMe}_{2} \mathrm{Ph}$. Treatment of 2 c with $\mathrm{PMe}_{2} \mathrm{Ph}$ at $-70^{\circ} \mathrm{C}$ instantly gives $\mathrm{C}_{2}(\mathrm{Cl}) \mathrm{TiCH}_{2} \mathrm{Pt} \mathrm{Me}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(3 \mathrm{c})$, which is in rapid equilibrium with $\mathbf{2 c}$: $[\mathbf{3 c}] /[\mathbf{2 c}]\left[\mathrm{PMe}_{2} \mathrm{Ph}\right]=1.1 \times 10^{3} \mathrm{M}^{-1}$ in THF- d_{8} at $-60^{\circ} \mathrm{C}$. The NMR data of 3 c in Table V suggest a similar structure to 3 d . The equilibrium mixture of 2 c and 3 c is much more sensitive to temperature than that of $\mathbf{2 d}$ and $\mathbf{3 d}$ and irreversibly affords $\mathrm{Cp}_{2} \mathrm{Ti}\left(=\mathrm{CH}_{2}\right) \mathrm{PMe}_{2} \mathrm{Ph}^{19}$, and trans$\mathrm{PtMeCl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ even at $-30^{\circ} \mathrm{C}$. The greater tendency of the $\mathrm{PMe}_{2} \mathrm{Ph}$ system to form the phosphine-coordinated titanocene methylidene species, as compared with the PMePh_{2} system, may be correlated with the strong affinity of titanocene species for basic and compact phosphines. ${ }^{19}$ Indeed, treatment of $\mathbf{2 b}$ with the more basic and compact PMe_{3} rapidly gave $\mathrm{Cp}_{2} \mathrm{Ti}\left(=\mathrm{CH}_{2}\right) \mathrm{PMe}_{3}$ even
(17) The presence of $\mathrm{Pt}-\mathrm{Cl}$ and/or $\mathrm{Ti}-\mathrm{Pt}$ bond(s) makes the two μ methylene hydrogens and the two Cp groups nonequivalent; it is inconsistent with the NMR results.
(18) There are two precedents of binuclear μ-methylene complexes without a metal-metal bond or an additional bridging ligand: Reference 6d. Arsenault, G. J.; Crespo, M.; Puddephatt, R. J. Organometallics 1987, 6, 2255.
(19) (a) Meinhart, J. D.; Anslyn, E. V.; Park, J. W.; Grubbs, R. H., unpublished results. (b) Meinhart, J. D. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1987.

Table V. NMR Data for the μ-Methylene (3c, 3d) and μ-(C,O)-Ketene Complexes (4c, 4d) ${ }^{a}$

complex	${ }^{1} \mathrm{H}$ NMR			${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR				assignment	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR	
	δ	$J, \mathrm{~Hz}$		δ	$J, \mathrm{~Hz}$		$\left[{ }^{1} J_{\mathrm{CH}}\right],$$\mathrm{Hz}$			
		PH	PtH		PC	PtC			δ^{d}	${ }^{1} J_{\mathrm{P}+\mathrm{P}}, \mathrm{Hz}$
3c (THF- $d_{8},-60^{\circ} \mathrm{C}$)	6.18 (s)	0.0	0.0	114.7 (s)	0	0	175	Cp	-6.6 (d)	1841
	5.19 (dd)	$7.9{ }^{\text {a }}$	68.1	158.4 (dd)	106, 10	670	114	$\mu-\mathrm{CH}_{2}$	-15.3 (d)	1880
	1.40 (dd)	8.3	b	14.3 (dd)	29, 2	b	129	PMe	(${ }^{2} J_{\mathrm{PP}}=$	$\mathrm{Hz})$
	1.21 (d)	7.8	b	14.2 (dd)	29, 2	b	129	PMe ${ }^{\prime}$		
	0.07 (dd)	9.3, 7.3	66.2	0.5 (dd)	103, 8	589	124	PtMe	(toluene-d	- $50{ }^{\circ} \mathrm{C}$)
3d (THF-d ${ }_{8},-60^{\circ} \mathrm{C}$)	6.08 (s)	0.0	0.0	114.5 (s)	0	0	174	Cp	10.0 (d)	1795
	5.16 (dd)	$7.9{ }^{\text {a }}$	69.8	158.1 (dd)	108, $\sim 8^{\text {b }}$	674	113	$\mu-\mathrm{CH}_{2}$	4.2 (d)	1979
	1.40 (d)	7.8	b	13.8 (d)	30	b	130	PMe	$\left({ }^{2} J_{\mathrm{PP}}\right.$	8 Hz)
	1.36 (d)	7.6	b	13.2 (d)	32	b	131	PMe'		
	-0.12 (dd)	9.8, 7.3	64.9	3.7 (dd)	99, 8	600	126	PtMe		
4c (toluene- $d_{8}, 25{ }^{\circ} \mathrm{C}$)				207.9 (t)	11	683	c	$\mathrm{C}=\mathrm{CH}_{2}$	-6.2 (s)	3015
	5.99 (s)	0.0	0.0	114.9 (s)	0	0	c	Cp		
	4.75 (s)	0.0	54.7					$=\mathrm{CH}$		
	3.96 (s)	0.0	22.5					$=\mathrm{CH}^{\prime}$		
				95.0 (s)	0	74	c	$=\mathrm{CH}_{2}$		
	1.66 (br t)	$\sim 3^{b}$	32.7	13.2 (br t)	17	b	c	PMe		
	0.05 (t)	6.8	48.8	-10.6 (t)	8	403	c	PtMe		
4d (toluene- $d_{8},-20^{\circ} \mathrm{C}$)				207.8 (t)	10	664	c	$\mathrm{C}=\mathrm{CH}_{2}$	9.2 (s)	3110
	5.77 (s)	0.0	0.0	115.0 (s)	0	0	c	Cp		
	4.66 (s)	0.0	53.7					$=\mathrm{CH}$		
	4.00 (s)	0.0	20.8					$=\mathrm{CH}^{\prime}$		
				96.6 (s)	0	64	c	$=\mathrm{CH}_{2}$		
	2.28 (br t)	$\sim 3^{\text {b }}$	b	14.1 (t)	19	b	c	PMe		
	-0.12 (t)	6.6	47.6	-6.5 (t)	7	403	c	PtMe		

${ }^{a}$ The signal appeared as a pseudotriplet. ${ }^{b}$ Coupling constant is obscure due to broadening. ${ }^{c}$ Not measured. ${ }^{d}$ Chemical shift is relative to an external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ standard (downfield positive).
at $-50^{\circ} \mathrm{C}$. In this system, formation of $\mathrm{Cp}_{2}(\mathrm{Cl}) \mathrm{TiCH}_{2} \mathrm{PtMe}$ $\left(\mathrm{PMe}_{3}\right)_{2}$ has also been suggested by NMR spectroscopy. Adequate identification of the μ-methylene complex could not be achieved due to its instability.

In contrast to the high reactivity of $\mu-\mathrm{Cl} / \mu-\mathrm{CH}_{2}$ complexes, the $\mu-\mathrm{Me} / \mu-\mathrm{CH}_{2}$ analogues 2 e and $\mathbf{2 f}$ are significantly more stable toward tertiary phosphines. For example, complex 2 e is totally unreactive with $\mathrm{PMe}_{2} \mathrm{Ph}$ below $0{ }^{\circ} \mathrm{C}$, while it slowly forms $\mathrm{Cp}_{2} \mathrm{Ti}\left(=\mathrm{CH}_{2}\right) \mathrm{PMe}_{2} \mathrm{Ph}$ and the corresponding dimethylplatinum species at room temperature. The higher stability of the μ-Me complexes relative to the $\mu-\mathrm{Cl}$ analogues may arise from the stronger $\mathrm{Pt}-\mathrm{Ti}$ bond in the former complexes. The palladium complex 2 g rapidly reacts with PMe_{3} at $-50^{\circ} \mathrm{C}$ to give trans$\mathrm{PdMeCl}\left(\mathrm{PMe}_{3}\right)_{2}$ and a paramagnetic titanium species. In this system, formation of a small amount of $\mathrm{Cp}_{2} \mathrm{Ti}\left(=\mathrm{CH}_{2}\right) \mathrm{PMe}_{3}$ has also been noted.

With Carbon Monoxide. The μ-methylene complexes 3c and 3d exhibit significantly high reactivities toward CO insertion. An equilibrium mixture of 2 c and 3 c prepared from 2 c and an

equimolar amount of $\mathrm{PMe}_{2} \mathrm{Ph}$ in toluene- $d_{8}([3 \mathrm{c}] /[2 \mathrm{c}]=4)$ was treated at $-70^{\circ} \mathrm{C}$ with an excess amount of carbon monoxide. When the temperature was raised to $-50^{\circ} \mathrm{C}$, the color of the system quickly changed from deep red to yellowish brown. NMR analysis of the reaction solution showed formation of the μ -(C,O)-ketene complex ($\mathbf{4 c}$) in 80% selectivity together with a small amount of trans $-\mathrm{PtMeCl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$. Similarly, the reaction of

2d, PMePh_{2}, and CO gave the μ-(C,O)-ketene complex having PMePh_{2} ligands (4d) in over 95% selectivity.

The ketene complexes are extremely moisture-sensitive, oily materials and could not be isolated in a pure state. NMR spectroscopy, however, gave unambiguous support to their structures (Table V). The chemical shifts of vinylic carbons and protons in the μ-ketene group are comparable with those for the $\mathrm{Zr} / \mathrm{Zr}, \mathrm{Zr} / \mathrm{Pt},{ }^{20}$ and $\mathrm{Zr} / \mathrm{Fe} \mu-(\mathrm{C}, \mathrm{O})$-ketene analogues. ${ }^{24}$ The triplet signals for PtMe and PMe protons and carbons indicate a trans configuration at the platinum center.

In the absence of added tertiary phosphines, complexes $\mathbf{2 c}$ and 2d under a CO atmosphere give $\mathrm{Ti} / \mathrm{Pt} \mu$-methylene species with a CO ligand at the platinum center, $\mathrm{Cp}_{2}(\mathrm{Cl}) \mathrm{TiCH}_{2} \mathrm{PtMe}(\mathrm{CO}) \mathrm{L}$ (see the Experimental Section). No sign of CO insertion, however, has been observed in these systems. Complexes 2e, 2f, and 2g show little reactivity toward carbon monoxide.

Reductive Elimination Reaction. Among the μ-methylene complexes described above, the titanium/palladium complex $\mathbf{2 g}$

(6)
is thermally unstable in solution and above room temperature readily undergoes a reductive elimination reaction to give $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{Et}) \mathrm{Cl}$ and $\left[\mathrm{Pd}^{0} \mathrm{PMe}_{3}\right]$. The latter species, formally a $12-$ electron complex, spontaneously decomposes under the reaction conditions to give metallic palladium and free PMe_{3}. The PMe_{3} thus released successively attacks 2 g to form trans- PdMeCl $\left(\mathrm{PMe}_{3}\right)_{2}$ and a paramagnetic titanium species. In the presence of 3-chloro-2-methylpropene, on the other hand, the $\operatorname{Pd}(0)$ species

[^6]is effectively trapped as a stable π-allylpalladium chloride complex, and the reductive elimination reaction can be observed to proceed in over 80% selectivity. As reaction 6 proceeds, it obeys first-order kinetics regarding the concentration of $\mathbf{2 g}$ up to 75% conversion. The reaction rate is only slightly dependent on the 3 -chloro-2methylpropene concentration. Further study of the mechanistic details, particularly of the effect of added tertiary phosphine on the reductive elimination reaction, could not be performed because of the extremely high reactivity of $\mathbf{2 g}$ toward phosphines to afford mononuclear titanium species and monomethylpalladium chloride.

Discussion

The titanium/platinum μ-methylene complexes have two limiting descriptions of bonding, I and II. In structure I, the μ -

1

11
methylene carbon is linked to the metal centers with σ bonds. Structure II, on the other hand, consists of $\mathrm{Cp}_{2} \mathrm{Ti}=\mathrm{CH}_{2}$ and $\mathrm{PtMe}(\mathrm{X}) \mathrm{L}$ moieties. The $\mathrm{Ti}=\mathrm{CH}_{2}$ group is bound to the platinum center in a π-bonding manner. The present results suggest that the proper bonding description lies somewhere between I and II, and the relative contribution of both structures varies with the bridging ligand X .

The contribution of structure II is reflected in the short $\mathrm{Ti}_{\mathrm{i}}-\mathrm{CH}_{2}$ distances in 2 c and 2 e . The tilting of the CH_{2} plane toward the platinum center, which indicates residual double-bonding character between Ti and the CH_{2} group, is also consistent with bonding description II. In this structure the dative $\mathrm{Pt} \rightarrow \mathrm{Ti}$ interaction may be regarded as a π back-donation from an occupied d orbital on platinum to the π^{*} orbital of the "titanaolefin" group, which is localized on the electropositive titanium atom. Similar to the bonding of general transition-metal olefin complexes, the π back-donation will shorten the $\mathrm{Ti}-\mathrm{Pt}$ and $\mathrm{Pt}-\mathrm{CH}_{2}$ bonds and elongate the $\mathrm{Ti}-\mathrm{CH}_{2}$ distance. That is, the longer $\mathrm{Ti}-\mathrm{CH}_{2}$ bond and the shorter $\mathrm{Ti}-\mathrm{Pt}$ and $\mathrm{Pt}-\mathrm{CH}_{2}$ distances in 2 e than those in 2c can be considered to reflect the higher contribution of II to 2e. In complex 2 e , the μ-Me group is ligated to titanium with its $\mathrm{C}-\mathrm{H} \sigma$-bonding electrons and to platinum by a normal covalent bond. The greater π-acidic nature of titanium compared to that of platinum may be responsible for this bonding pattern and facilitates the contribution of II to 2 e .

The reaction in eq 3 strongly suggests the predominant contribution of structure I to the $\mu-\mathrm{CH}_{2} / \mu-\mathrm{Cl}$ complexes. These compounds have two electrophilic metal centers with formal 16electron configurations. Nucleophilic attack of phosphine at the platinum center induces cleavage of the $\mathrm{Pt}-\mathrm{Cl}$ bond to give 3 c and 3d, which are in rapid equilibrium with $\mathbf{2 c} \cdot \mathrm{L}$ and $\mathbf{2 d} \cdot \mathrm{L}$, respectively (Scheme I; path a). This reaction readily proceeds even at $-70^{\circ} \mathrm{C}$.

At elevated temperatures, on the other hand, this kinetically preferred reaction becomes unfavorable due to the large negative entropy arising from the sterically crowded structures of $\mathbf{3 c}$ and 3d and the less favorable attack of phosphine at the titanium center takes place (path b). This reaction affords the titanocene methylidene species, which may be weakly coordinated to the [$\mathrm{PtMe}(\mathrm{Cl}) \mathrm{L}]$ moiety. Successive attack by another phosphine at the platinum atom yields the monomethylplatinum and methylidenetitanium complexes. Reaction path b is consistent with a partial contribution by structure II to the $\mu-\mathrm{CH}_{2} / \mu-\mathrm{Cl}$ complexes, in agreement with the X-ray structure of $\mathbf{2 c}$.

The μ-methylene complexes with $\mathrm{Ti}-\mathrm{Pt}$ bonds ($\mathbf{2 a} \mathbf{- 2 f}$) show high stability toward CO insertion. In contrast, complexes $3 \mathbf{c}$ and 3d react rapidly with CO to give μ-(C,O)-ketene species 4 c and 4 d , respectively. The first step of this transformation is proposed to be CO insertion into the $\mathrm{Ti}-\mathrm{CH}_{2}$ bond to form a μ-(C,C)-ketene complex A (Scheme II). ${ }^{22}$

As is well documented for mononuclear acyl complexes of group 4 metals, ${ }^{23}$ a μ-(C,C)-ketene group ligated to titanium in an η^{2}-coordination manner should have oxycarbene character (B). This will induce successive 1,2 -migration of the $\mathrm{PtMe}(\mathrm{Cl}) \mathrm{L}$ group to form a μ-(C,O)-ketene complex. ${ }^{20,24}$

Despite an abundance of μ-methylene complexes, there are currently only three definitive examples of carbonylation of a μ-methylene species to give a μ-ketene complex. ${ }^{6}$ Two of them are related to trinuclear osmium clusters, ${ }^{6 \mathrm{~b}, \mathrm{c}}$ and the other one is related to the binuclear ruthenium complex $[\mathrm{Cp}$ (CO) $\left.{ }_{2} \mathrm{Ru}\right]_{2} \mathrm{CH}_{2}$. ${ }^{\text {d }}$ The present reaction is analogous to the latter case except that the ruthenium system gives the $\mu-(\mathrm{C}, \mathrm{C})$-ketene species, while the present reaction gives the μ-(C,O)-ketene complex, owing to the highly oxophilic character of titanium. In the ruthenium complex the two Ru atoms are linked to each other only by the $\mu-\mathrm{CH}_{2}$ ligand, and there is neither an additional bridging group nor a metal-metal bond. The NMR data suggest that the present complexes 3c and 3d possess a similar bonding feature. The lack of additional bonding between the two metal centers in these μ-methylene complexes may be responsible for their much greater reactivity toward CO insertion, as compared with the corresponding μ-methylene complexes with metal-metal bonds.

The present study revealed several interesting bonding and reactivity features of the titanium/platinum and palladium μ methylene complexes. These features have not been observed in other well-known late-transition-metal μ-methylene complexes. ${ }^{4}$ The presence of the two metal centers of significantly different properties, namely the electron-deficient titanium and the elec-tron-rich platinum and palladium atoms, is responsible for these unique bonding and reactivity patterns. Similar patterns may occur in the early/late heterobimetallic catalysts in the SMSI state and serve as an important reason for their high activity in catalytic CO hydrogenation.

Experimental Section

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left[{ }^{1} \mathrm{H}\right]$ NMR spectra were recorded on JEOL GX-400 $\left({ }^{1} \mathrm{H}\right.$, $399.8 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 100.4 \mathrm{MHz}$) and FX-90Q (${ }^{1} \mathrm{H}, 89.6 \mathrm{MHz}$) spectrometers by using ${ }^{1} \mathrm{H}$ (of residual protons) and ${ }^{13} \mathrm{C}$ NMR signals of deuteriated solvents as internal references [benzene- $d_{6}\left({ }^{1} \mathrm{H}, \delta 7.15 ;{ }^{13} \mathrm{C}, \delta\right.$ 128.0), toluene- $d_{8}\left({ }^{1} \mathrm{H}, \delta 2.09 ;{ }^{13} \mathrm{C}, \delta 20.4\right)$, THF- $d_{8}\left({ }^{1} \mathrm{H}, \delta 3.58 ;{ }^{13} \mathrm{C}, \delta\right.$ 67.4), $\left.\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}, \delta 7.24\right)\right]$. ${ }^{1} J_{\mathrm{CH}}$ values were determined by ${ }^{13} \mathrm{C}$ NMR spectroscopy in an INEPT sequence. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals were obtained on a JEOL FX-90Q spectrometer (36.2 MHz) and their chemical shifts referred to an external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ standard (downfield positive). Infrared spectra were measured on a Perkin-Elmer 1720 (FT) spectrometer. Elemental analyses were performed by the Californa Institute of Technology Analytical Facility.

All manipulations were carried out under argon or vacuum with standard Schlenk techniques or in a nitrogen-filled glovebox. Argon was purified by passage through columns of Chemalog R3-11 catalyst and Linde $4-\AA$ molecular sieves. Toluene, benzene, diethyl ether, pentane, and THF, including NMR solvents, were dried over sodium benzophenone ketyl and vacuum transferred and stored in flasks equipped with Teflon screw valves. Carbon monoxide (Matheson), tertiary phosphines (Strem), and a $\mathrm{Et}_{2} \mathrm{O}$ solution of MeMgBr (Aldrich) were used as purchased. $\left[\mathrm{PdMe}(\mu-\mathrm{Cl}) \mathrm{PMe}_{3}\right]_{2}$ was prepared by a method similar to its PEt_{3} analogue. ${ }^{25}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.61\left(\mathrm{~d}, J_{\mathrm{PH}}=2.4 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\mathrm{PdMe}), 1.40\left(\mathrm{~d}, J_{\mathrm{PH}}=11.0 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{PMe}\right)$.

Preparation of 2c. To a toluene solution of $\mathbf{2 a}{ }^{5 b}$ prepared from $\mathrm{Cp}_{2} \mathrm{TiCH}_{2} \mathrm{C}(\mathrm{Me})_{2} \mathrm{CH}_{2}(1,0.20 \mathrm{~g}, 0.82 \mathrm{mmol}),{ }^{13} \mathrm{PtMeCl}\left(\mathrm{SMe}_{2}\right)_{2}(0.30$ $\mathrm{g}, 0.82 \mathrm{mmol}),{ }^{26}$ and toluene (3 mL) was added $116 \mu \mathrm{~L}$ of $\mathrm{PMe}_{2} \mathrm{Ph}$ at
(22) An alternative process involving a CO insertion into the $\mathrm{Pt}-\mathrm{CH}_{2}$ bond is unlikely because cis-dialkylplatinum(II) complexes are known to possess great stability toward CO insertion: Booth, G.; Chatt, J. J. Chem. Soc. A 1966, 634. In contrast, CO insertion into a $\mathrm{Ti}-\mathrm{R}$ bond to give a $\mathrm{Cp}_{2} \mathrm{Ti}$ (COR)Cl complex proceeds under mild conditions: Fachinetti, G.; Floriani, C. J. Organomet. Chem. 1974, 7l, C5.
(23) (a) Wolczanski, P. T.; Bercaw, J. E. Acc. Chem. Res. 1980, 13, 121. (b) Tatsumi, K.; Nakamura, A.; Hofmann, P.; Stanffert, P.; Hoffmann, R. J. Am. Chem. Soc. 1985, 107, 4440, and references cited therein.
(24) Mariquez, J. M.; Fagan, P. J.; Marks, T. J.; Day, C. S.; Day, V. W. J. Am. Chem. Soc. 1978, 100, 7112.
(25) Scott, J. D.; Puddephatt, R. J. Organometallics 1983, 2, 1643.
(26) Hayashi, Y.; Isobe, K.; Nakamura, Y.; Okeya, S. J. Organomet. Chem. 1986, 310, 127.

Scheme I

Scheme II

$-20^{\circ} \mathrm{C}$. After the solution was stirred for 2 h at room temperature, volatiles were removed under vacuum. The resulting red solid was dissolved in toluene (2 mL), diluted with pentane (4 mL), and then filtered through a filter-paper-tipped cannula. The filtrate was slowly cooled to $-50^{\circ} \mathrm{C}$ to yield red crystals of $\mathbf{2 c}$, which were collected by filtration, washed with cold pentane ($2 \mathrm{~mL} \times 2$), and dried under vacuum (0.43 g, 92%). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{CIPPITi}$: C, 41.72; H, 4.55. Found: $\mathrm{C}, 41.56 ; \mathrm{H}, 4.59$. Similarly prepared was $\mathrm{Cp}_{2} \mathrm{TiCH}_{2} \mathrm{PtCl}(\mathrm{Me}) \mathrm{PMePh}_{2}$ (2d) by using PMePh_{2} in place of $\mathrm{PMe}_{2} \mathrm{Ph}$ (52%). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{28}$ CIPPtTi: C, 47.07; H, 4.42. Found: C, 47.19; H, 4.51. Reaction of $\mathbf{2 a}$ and PMe_{3} in toluene gave the PMe_{3} analogue (2b) as a spectroscopically pure, red oil after removal of volatiles under reduced pressure.

Preparation of 2 e . To a homogeneous solution of $2 \mathrm{c}(0.70 \mathrm{~g}, 1.2$ mmol) in a toluene (11 mL) and $\mathrm{Et}_{2} \mathrm{O}(11 \mathrm{~mL})$ mixture was added dropwise a $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{MeMgBr}(2.2 \mathrm{~mL}, 4.1 \mathrm{mmol})$ at room temperature. After it was stirred for 3 h , the mixture was concentrated to dryness under vacuum and extracted with toluene (22 mL). The extract was again concentrated to dryness to give a reddish orange solid, which was dissolved in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and cooled to $-50^{\circ} \mathrm{C}$ to yield
crystals of $2 \mathrm{e}(0.29 \mathrm{~g}, 42 \%)$. ${ }^{1} \mathrm{H}$ NMR analysis showed that the product contains 4% of the geometrical isomer 2 f , which could not be removed by repeated recrystallizations. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{PPtTi}$: $\mathrm{C}, 45.41$; H, 5.26. Found: C, 45.37; H, 5.07. IR (KBr): $2516 \mathrm{~cm}^{-1}$ (ν_{CH} of the agostic hydrogen).
Preparation of 2 f . A solution of $2 \mathrm{e}(0.20 \mathrm{~g}, 0.36 \mathrm{mmol})$ in toluene (3 mL) and $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was combined with a $\mathrm{Et}_{2} \mathrm{O}$ solution of MeMgBr ($200 \mu \mathrm{~L}, 0.37 \mathrm{mmol}$) at room temperature. After the solution was stirred for 19 h , volatiles were removed under vacuum, and the resulting solid was extracted with toluene (4 mL). The extract was again concentrated to dryness to form a precipitate of 2 f . The crude product was recrystallized from $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ at $-50{ }^{\circ} \mathrm{C}$ to yield reddish orange crystals ($0.13 \mathrm{~g}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR spectrum of the product revealed contamination with $2 \mathrm{e}(4 \%)$ and an unidentified compound (6%), which could not be removed by repeated recrystallizations. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{PPtTi}$: C, 45.41; H, 5.26 . Found: C, $44.59 ; \mathrm{H}, 5.05$. IR (KBr): $2518 \mathrm{~cm}^{-1}\left(\nu_{\mathrm{CH}}\right.$ of the agostic hydrogen).

Preparation of $\mathbf{2 g}$. To a Schlenk flask containing the titanacyclobutane $1(0.15 \mathrm{~g}, 0.60 \mathrm{mmol})$ and $\left[\mathrm{PdMe}(\mu-\mathrm{Cl}) \mathrm{PMe}_{3}\right]_{2}(0.14 \mathrm{~g}, 0.30$ mmol) was added toluene (3 mL) at $-20^{\circ} \mathrm{C}$. The heterogeneous mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then at $10^{\circ} \mathrm{C}$ for 3 h to give a red solution containing a small amount of brown precipitate. The solution was filtered through a filter-paper-tipped cannula, diluted with pentane (5 mL), and cooled to $-50^{\circ} \mathrm{C}$. After 4 days, red crystals of 2 g formed. The product was washed with cold pentane ($3 \mathrm{~mL} \times 2$) and dried under vacuum at $0^{\circ} \mathrm{C}(0.16 \mathrm{~g}, 59 \%)$. The crystalline product contained 0.3 equiv $/ \mathbf{2 g}$ of toluene as confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{CIPPdT} \cdot 0.3 \mathrm{C}_{7} \mathrm{H}_{8}: \mathrm{C}, 45.37 ; \mathrm{H}, 5.88$. Found: C, 45.37; H, 5.78.

Reactions of 2d and 2c with Tertiary Phosphines. A solution of 2d $(22.7 \mathrm{mg}, 0.0356 \mathrm{mmol})$ in THF- $d_{8}(400 \mu \mathrm{~L})$ was placed in an NMR sample tube equipped with a rubber septum cap. At $-70^{\circ} \mathrm{C}, \mathrm{PMePh}_{2}$ $(17 \mu \mathrm{~L}, 0.090 \mathrm{mmol})$ was added by means of a syringe. The clear red solution turned deep red within a few minutes. NMR analysis at -60 ${ }^{\circ} \mathrm{C}$ revealed that the system contains $\mathbf{2 d}$ and $\mathbf{3 d}$ in a $18: 82$ ratio; the value is based on relative Cp peak integration. The characteristic NMR data for 3d are listed in Table V.

The same reaction was examined over the temperature range - 50 to $+25^{\circ} \mathrm{C}$ by using $2 \mathrm{~d}(18.3 \mathrm{mg}, 0.0289 \mathrm{mmol}), \mathrm{PMePh}_{2}(7.4 \mu \mathrm{~L}, 0.039$ $\mathrm{mmol})$, and toluene- $d_{8}(400 \mu \mathrm{~L})$ as the solvent. When the temperature was raised, the deep red solution turned clear red, and when it cooled, the system again exhibited the deep red color. This color change was accompanied by an alteration in a relative ratio of $\mathbf{2 d}$ and $\mathbf{3 d}$ as confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The equilibrium constants ($K_{\text {eq }}=[\mathbf{3 d}] /$ [2d] $\left[\mathrm{PMePh}_{2}\right]$) at four different temperatures and the thermodynamic parameters are given in the text. When the solution was allowed to stand at room temperature, gradual formation of $\mathrm{Cp}_{2} \mathrm{Ti}\left(=\mathrm{CH}_{2}\right) \mathrm{PMePh}_{2}{ }^{19}$ and trans- $\mathrm{PtMe}(\mathrm{Cl})\left(\mathrm{PMePh}_{2}\right)_{2}{ }^{27}$ was observed over 24 h in the ${ }^{1} \mathrm{H}$ NMR spectra. Identification of these compounds was achieved by comparison with ${ }^{1} \mathrm{H}$ NMR spectra of authentic samples measured under similar conditions. ${ }^{1} \mathrm{H}$ NMR $\left[\mathrm{Cp}_{2} \mathrm{Ti}\left(=\mathrm{CH}_{2}\right) \mathrm{PMePh}_{2}\right]: \delta 12.39\left(\mathrm{~d}, J_{\mathrm{PH}}=6.3\right.$ $\mathrm{Hz}, \mathrm{CH}_{2}$), $5.32\left(\mathrm{~d}, J_{\mathrm{PH}}=2.0 \mathrm{~Hz}, \mathrm{Cp}\right), 1.55\left(\mathrm{~d}, J_{\mathrm{PH}}=6.3 \mathrm{~Hz}, \mathrm{PMe}\right) .{ }^{1} \mathrm{H}$ NMR [trans-PtMeCl($\left.\left.\mathrm{PMePh}_{2}\right)_{2}\right]: \delta 0.27\left(\mathrm{br}, J_{\mathrm{PH}}=79.1 \mathrm{~Hz}, \mathrm{PtMe}\right)$. The methylidene complex was unstable under the reaction conditions and readily decomposed into an unidentified paramagnetic titanium species.

The reaction of 2 c and $\mathrm{PMe}_{2} \mathrm{Ph}$ was similarly examined. The NMR data for 3 c in THF- d_{8} at $-60^{\circ} \mathrm{C}$ are given in Table V. The system rapidly afforded $\mathrm{Cp}_{2} \mathrm{Ti}\left(=\mathrm{CH}_{2}\right) \mathrm{PMe}_{2} \mathrm{Ph}^{19}$ and trans $-\mathrm{PtMeCl}\left(\mathrm{PMe} \mathrm{Ph}_{2}{ }_{2}{ }^{27}\right.$ above $-30^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR data of these compounds in toluene- d_{8} at $-10^{\circ} \mathrm{C}$ are as follows. ${ }^{1} \mathrm{H}$ NMR [$\left.\mathrm{Cp}_{2} \mathrm{Ti}\left(=\mathrm{CH}_{2}\right) \mathrm{PMe} \mathrm{P}_{2} \mathrm{Ph}\right]: \delta 12.29(\mathrm{~d}$, $\left.J_{\mathrm{PH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.34\left(\mathrm{~d}, J_{\mathrm{PH}}=2.4 \mathrm{~Hz}, \mathrm{Cp}\right), 1.09\left(\mathrm{~d}, J_{\mathrm{PH}}=5.9 \mathrm{~Hz}\right.$, PMe). ${ }^{1} \mathrm{H}$ NMR $\left[\right.$ trans- $\left.\mathrm{PtMeCl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]: \delta 1.39$ (br, PMe), 0.38 (br, $J_{\mathrm{PH}}=80.5 \mathrm{~Hz}, \mathrm{PtMe}$). These NMR data were in fair agreement with those of authentic samples measured under similar conditions.

Reaction of 3 c and CO. To a solution of $\mathbf{2 c}(21.6 \mathrm{mg}, 0.375 \mathrm{mmol})$ in toluene- $d_{8}(0.4 \mathrm{~mL})$ in an NMR sample tube equipped with a rubber septum cap was added $\mathrm{PMe}{ }_{2} \mathrm{Ph}(5.3 \mu \mathrm{~L}, 0.37 \mathrm{mmol})$ at $-70^{\circ} \mathrm{C}$. CO gas (1 atm) was then introduced by means of a syringe. When the temperature was raised to $-50^{\circ} \mathrm{C}$, the deep red color of the solution quickly changed to yellowish brown. After standing at $-50^{\circ} \mathrm{C}$ for 12 h , the solution was examined by NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectrum showed formation of $4 \mathrm{c}(80 \% / \mathbf{2 c})$ and trans $-\mathrm{PtMeCl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(20 \%)$; the yields are based on relative PtMe peak integration. Comparison of peak integrations of the Cp and PMe signals suggested that ca. 20% of titanium is converted into a paramagnetic species. The NMR data for 4 c are listed in Table V. The same reaction was performed in a Schlenk flask. After completion of the reaction, the volatile products were removed under vacuum to give a brown, oily material. NMR a nalysis of this product showed formation of 4 c in a selectivity similar to the NMR

[^7]tube reaction. Several attempts to obtain 4 c as a pure compound were unsuccessful.

Reaction of 3d and CO. An NMR sample tube containing 2d (17.7 $\mathrm{mg}, 0.0278 \mathrm{mmol})$ and $\mathrm{PMePh}_{2}(5.6 \mu \mathrm{~L}, 0.030 \mathrm{mmol})$ was attached to a vacuum line, and toluene- $d_{8}(0.4 \mathrm{~mL})$ stored over sodium benzophenone ketyl was introduced by vacuum transfer at $-196^{\circ} \mathrm{C}$. The system was warmed to $-78^{\circ} \mathrm{C}$, and CO gas (1 atm) was then introduced. After the tube as sealed, the system was allowed to stand at $-20^{\circ} \mathrm{C}$ for 3 days. NMR analysis of the resulting solution revealed formation of 4 d in 95% selectivity together with a small amount of trans $-\mathrm{PtMeCl}\left(\mathrm{PMePh}_{2}\right)_{2}$. The NMR data of $\mathbf{4 d}$ are given in Table V.

Reaction of 2d and CO in the Absence of PMePh_{2}. A solution of 2d $(16.7 \mathrm{mg}, 0.0262 \mathrm{mmol})$ in toluene- $d_{8}(0.4 \mathrm{~mL})$ was placed in an NMR sample tube. After the system was evacuated, CO gas (1 atm) was introduced at $-78^{\circ} \mathrm{C}$. The sample tube was sealed with a flame and allowed to stand at $-50^{\circ} \mathrm{C}$ for 6 h . The clear red color of the solution turned reddish purple. NMR analysis of the solution revealed that the system contains $\mathbf{2 d}$ and a new μ-methylene complex $\mathbf{5 d}$ in a $4: 21$ ratio. The NMR data for 5 d (toluene- $d_{8},-30^{\circ} \mathrm{C}$) are as follows. ${ }^{1} \mathrm{H}$ NMR: $\delta 6.11\left(\mathrm{~d}, J_{\mathrm{PH}}=6.1 \mathrm{~Hz}, J_{\mathrm{PtH}}=61.5 \mathrm{~Hz}, 2 \mathrm{H}, \mu-\mathrm{CH}_{2}\right), 5.93(\mathrm{~s}, 10 \mathrm{H}$, Cp), $1.84\left(\mathrm{~d}, J_{\mathrm{PH}}=9.3 \mathrm{~Hz}, J_{\mathrm{PtH}}=23.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PMe}\right), 1.03\left(\mathrm{~d}, J_{\mathrm{PH}}=\right.$ $\left.10.7 \mathrm{~Hz}, J_{\mathrm{PtH}}=68.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PtMe}\right) .{ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right] \mathrm{NMR}: \delta 2.0\left(\mathrm{~s}, J_{\mathrm{PlP}}=\right.$ $1911 \mathrm{~Hz})$. The same reaction was examined by using ${ }^{13} \mathrm{CO}(99.7 \%$ isotopic purity). In the ${ }^{1} \mathrm{H} N M R$ the PtMe and $\mu-\mathrm{CH}_{2}$ protons showed a coupling toward the ${ }^{13} \mathrm{CO}: J^{13} \mathrm{CCH}_{3}=2.2 \mathrm{~Hz} ; J_{13} \mathrm{CCH}_{2}=2.9 \mathrm{~Hz} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the same solution exhibited a doublet signal assignable to a terminal ${ }^{13} \mathrm{CO}$ ligand coordinated to the platinum: $\delta 182.4$ (d, J_{PC} $=7 \mathrm{~Hz}, J_{\mathrm{P} C \mathrm{C}}=1092 \mathrm{~Hz}$). The coupling between the terminal ${ }^{13} \mathrm{CO}$ carbon and the phosphorus was observed also in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. These NMR data strongly suggest the structure $\mathrm{Cp}_{2}(\mathrm{Cl})$ $\mathrm{TiCH}_{2} \mathrm{PtMe}(\mathrm{CO}) \mathrm{PMePh}_{2}$ for 5d. The NMR sample solution was warmed to room temperature, and the reddish purple solution turned red. ${ }^{1} \mathrm{H}$ NMR spectrum of the solution showed reformation of 2d at the cost of $\mathbf{5 d}$ ($2 \mathrm{~d}: 5 \mathrm{~d}=4: 1$ after 2 h at room temperature). In this spectrum several singlet peaks were also observed in the Cp region. After 1 day at room temperature, a ${ }^{1} \mathrm{H}$ NMR spectrum of this solution became complicated. No sign of CO insertion was observed.

Reaction of $2 \mathrm{c}(16.5 \mathrm{mg}, 0.0286 \mathrm{mmol})$ and $\mathrm{CO}(1 \mathrm{~atm})$ in toluene- d_{8} (0.4 mL) was similarly examined. The reaction formed a μ-methylene complex $5 \mathbf{c}$, a compound isostructural to $5 \mathrm{~d}\left(2 \mathrm{c}: 5 \mathrm{c}=1: 9 \mathrm{at}-50^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(-50^{\circ} \mathrm{C}\right): \delta 6.18\left(\mathrm{~d}, J_{\mathrm{PH}}=6.1 \mathrm{~Hz}, J_{\mathrm{PH}}=59.1 \mathrm{~Hz}, 2 \mathrm{H}, \mu-\mathrm{CH}_{2}\right)$, $5.93(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp}), 1.31\left(\mathrm{~d}, J_{\mathrm{PH}}=9.3 \mathrm{~Hz}, J_{\mathrm{PtH}}=23.9 \mathrm{~Hz}, 6 \mathrm{~Hz}, \mathrm{PMe}\right)$, $1.04\left(\mathrm{~d}, J_{\mathrm{PH}}=10.7 \mathrm{~Hz}, J_{\mathrm{PtH}}=68.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PtMe}\right) ; J_{13 \mathrm{CCH}_{2}}=2.7 \mathrm{~Hz}$, $J_{13} \mathrm{CCH}_{3}=2.4 \mathrm{~Hz} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(-50^{\circ} \mathrm{C}\right.$, terminal CO only $): \delta 182.5$ $\left(\mathrm{d}, J_{\mathrm{PC}}=7 \mathrm{~Hz}, J_{\mathrm{P} C \mathrm{C}}=1092 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{^{1} \mathrm{H}\right\} \mathrm{NMR}\left(-50^{\circ} \mathrm{C}\right): \delta-14.0\left(J_{\mathrm{P}_{1} \mathrm{P}}\right.$ $=1914 \mathrm{~Hz}$). At room temperature the system reproduced $\mathbf{2 c}$ and formed some unidentified species. No sign of CO insertion, however, was observed.

Reductive Elimination of $\mathbf{2 g}$. A solution of $\mathbf{2 g}(8.7 \mathrm{mg}, 0.0250 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(400 \mu \mathrm{~L})$ was placed in an NMR sample tube equipped with a rubber septum cap, and $10 \mu \mathrm{~L}$ of 3-chloro-2-methylpropene (0.10 mmol) was added at room temperature. The tube was placed in an NMR sample probe controlled to $50.0 \pm 0.1^{\circ} \mathrm{C}$. The reaction progress was followed by measurement of the change in relative $C p$ peak integration of $\mathbf{2 g}$ and $\mathrm{Cp}_{2} \mathrm{TiEtCl}$ in the ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{1} \mathrm{H}$ NMR spectrum at 100% conversion of 2 g showed formation of $\mathrm{Cp}_{2} \mathrm{TiEtCl}^{28}$ and ($\eta^{3}-2-$ methylallyl) $\mathrm{Pd}(\mathrm{Cl}) \mathrm{PMe}_{3}$ in 82% selectivity. ${ }^{1} \mathrm{H}$ NMR [Cp $\left.\mathrm{P}_{2} \mathrm{TiEtCl}\right]: \delta$ $5.78(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp}), 1.62\left(J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{TiCH}_{2} \mathrm{CH}_{3}\right), 1.28\left(\mathrm{t}, J_{\mathrm{HH}}\right.$ $\left.=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{TiCH}_{2} \mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left[\left(\eta^{3}-2\right.\right.$-methylallyl) $\mathrm{Pd}(\mathrm{Cl}) \mathrm{PMe} \mathrm{P}_{3}$]: $\delta 4.24\left(\mathrm{~d}, J_{\mathrm{PH}}=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, allyl H$), 3.20\left(\mathrm{~d}, J_{\mathrm{PH}}=10.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, allyl H), 2.65 (br s, 1 H, allyl H), 2.02 (br s, 1 H , allyl H), 1.46 (s, 3 H , allyl $\mathrm{Me}), 0.99\left(\mathrm{~d}, J_{\mathrm{PH}}=9.8 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PMe}\right) .^{29}$ The reductive elimination rate constants $\left(10^{4} k_{\text {obsd }}, \mathrm{s}^{-1}\right)$ at three different concentrations of 3 -chloro-2-methylpropene (M) are as follows (at $50^{\circ} \mathrm{C}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$; concentration of the chloride is in parentheses): 6.4 (0.51), 5.9 (0.25), 5.9 (0.13).

X-ray Diffraction Study of 2c. An irregular plate obtained by slow cooling of a $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathbf{2 c}$ was mounted in a capillary and placed on a CAD-4 diffractometer. Unit cell dimensions plus an orientation matrix were oblained from the setting angles of 25 reflections with 15° $<2 \theta<21^{\circ}$. The cell dimensions suggested a monoclinic cell, and systematic absences in the diffractometer data indicated the space group $P 2_{1} / n$, an unconventional setting of $P 2_{1} / c$. Data were collected at a scan rate of $2^{\circ} / \mathrm{min}$, with 3 reflections monitored every 10000 s of X-ray exposure. These indicated a small linear crystal decay; the data were

[^8]corrected for this and for absorption, Lorentz and polarization factors were applied, and the data were placed on an approximately absolute scale by Wilson's method. The platinum position was easily found from a Patterson map and subsequent structure factor-Fourier cycles showed the remaining non-hydrogen atoms. After six cycles of least squares, hydrogen atoms were introduced at calculated positions on the benzene and cyclopentadienyl rings and at positions determined from difference maps for the methyl and methylene hydrogen atoms. Further refinement of the positional and anisotropic thermal parameters of the non-hydrogen atoms and the positional parameters of the bridging methylene group hydrogen atoms (the remaining hydrogen atoms being repositioned once) converged, with no shift greater than 0.03σ. The R index for reflections with $F_{0}^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$ was 0.035 .

X-ray Diffraction Study of $\mathbf{2 e}$. A single crystal prepared by slow cooling of a $\mathrm{Et}_{2} \mathrm{O}$ solution of $2 \mathbf{e}$ was mounted in a greased capillary and centered on the diffractometer. Unit cell parameters and an orientation matrix were otained by a least-squares calculation from the setting angles of 23 reflections with $42^{\circ}<2 \theta<46^{\circ}$. Two equivalent data sets out to a 2θ of 50° were collected at scan rates varying between 2 and $4^{\circ} / \mathrm{min}$ with three reflections monitored every 10000 s of X-ray exposure. The data were corrected for absorption and a slight decay. Lorentz and polarization factors were applied, and the two data sets were then merged to yield the final data set. Several visible cracks in the crystal parallel to the 100 planes did not noticeably affect the scan profiles. Systematic absences in the diffractometer data led to the choice of space group $P 2_{1} / n$. Starting non-hydrogen atom positions were assumed from the results of 2c. Hydrogen atom positions were determined by calculation (for benzene and cyclopentadienyl rings) or from difference maps (for the methyl and methylene groups). The three hydrogen atoms of the terminal methyl group bonded to the platinum atom were modeled by six evenly spaced half-population hydrogen atoms at calculated positions with isotropic B values 10% greater than that of the attached carbon; these were not refined. The complete least-squares full matrix, consisting of spatial and isotropic thermal parameters for the remaining hydrogen atoms, spatial and anisotropic thermal parameters for the non-hydrogen atoms, a scale factor, and a secondary extinction coefficient, contained 322 parameters. The hydrogen results were quite acceptable. A final difference Fourier showed deviations of less than 1 e \AA^{-3}, mostly attributable to absorption ripple near the two heavy atoms. The final R index was $0.0394\left(0.0242\right.$ for $\left.F_{0}{ }^{2}>3 \sigma\left(F_{0}^{2}\right)\right)$ with a goodness of fit of 1.12 .

Calculations were performed with programs of the CRYM Crystallographic Computing System and ORTEP. Scattering factors and corrections for anomalous scattering were taken from a standard reference. ${ }^{30}$ $R=\sum_{\mathrm{l}}\left|F_{0}-\left|F_{\mathrm{c}}\right|\right| / \sum F_{0}$, for only $F_{0}{ }^{2}>0$, and goodness of fit $=\left[\sum w\left(F_{0}{ }^{2}\right.\right.$ $\left.\left.-F_{c}^{2}\right)^{2} /(n-p)\right]^{1 / 2}$ where n is the number of data and p the number of parameters refined. The function minimized in least squares was $\sum w\left(F_{0}{ }^{2}\right.$ $\left.-F_{\mathrm{c}}{ }^{2}\right)^{2}$, where $w=1 / \sigma^{2}\left(F_{0}{ }^{2}\right)$. Variances of the individual reflections were assigned on the basis of counting statistics plus an additional term, $0.014 I^{2}$. Variances of the merged reflections were determined by standard propagation of error plus another additional term, $0.014\langle I\rangle^{2}$. The absorption correction was done by Gaussian integration over an 8 $\times 8 \times 8$ grid. Transmission factors varied from 0.438 to 0.716 for $\mathbf{2 c}$ and from 0.317 to 0.409 for 2 e . The secondary extinction parameters ${ }^{31}$ refined to $0.039(10) \times 10^{-6}$ (for 2 e) and 0.0477 (10) $\times 10^{-6}$ (for 2 e).

Acknowledgment. We acknowledge the financial support of the Department of Energy and the National Science Foundation. We thank the NSF for Grant CHE-821939 to purchase the diffractometer and the Exxon Educational Foundation for financial support.

Registry No. 1, 80122-07-2; 2a, 117119-20-7; 2b, 118204-82-3; 2c, 118102-09-3; 2d, 118102-10-6; 2e, 118102-00-4; 2f, 118141-32-5; 2g, 118102-01-5; 3c, 118102-03-7; 3d, 118102-04-8; 4c, 118102-06-0; 4d, 118102-07-1; 5c, 118102-12-8; 5d, 118102-11-7; $\mathrm{PtMeCl}\left(\mathrm{SMe}_{2}\right)_{2}$, 87145-39-9; $\left[\mathrm{PdMe}(\mu-\mathrm{Cl}) \mathrm{PMe}_{3}\right]_{2}, 118102-02-6 ; \mathrm{Cp}_{2} \mathrm{Ti}\left(=\mathrm{CH}_{2}\right) \mathrm{PMePh}_{2}$, 118102-05-9; trans- $\mathrm{PtMe}(\mathrm{Cl})(\mathrm{PMePh})_{2}, 24833-61-2 ; \mathrm{Cp}_{2} \mathrm{Ti}\left(=\mathrm{CH}_{2}\right)$ $\mathrm{PMe}_{2} \mathrm{Ph}, 108969-89-7$; trans- $\mathrm{PtMe}(\mathrm{Cl})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)$, 24833-58-7; $\mathrm{Cp}_{2} \mathrm{TiEtCl}, 12295-16-8$; (η^{3}-2-methylallyl) $\mathrm{Pd}(\mathrm{Cl}) \mathrm{PMe}_{3}, 118102-08-2$; 3-chloro-2-methylpropene, 563-47-3.

Supplementary Material Available: Atomic numbering schemes and tables of anisotropic displacement parameters, hydrogen parameters, and complete distances and angles (14 pages); tables of observed and calculated structure factors (24 pages). Ordering information is given on any current masthead page.

[^9]
[^0]: (1) (a) Jacobsen, E. N.; Goldberg, K. I.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 3706. (b) White, G. S.; Stephan, D. W. Organometallics 1988, 7, 903. (c) Gelmini, L.: Stephan, D. W. Ibid. 1988, 7, 849. (d) White, G. S.; Stephan, D. W. Ibid. 1987, 6, 2169 , and references cited therein. (e) Sartain, W. J.; Selegue, J. P. Organometallics 1987, 6, 1812; J. Am. Chem. Soc. 1985, 107, 5818. (f) Casey, C. P.; Jordan, R. F.; Rheingold, A. L. J. Am. Chem. Soc. 1983, 105, 665, and references cited therein. (g) Casey, C. P.; Palermo, R. E.; Rheingold, A. L. Ibid. 1986, 108, 549. (h) Casey, C. P.; Palermo, R. E.; Jordan, R. F.; Rheingold, A. L. Ibid. 1985, 107, 4597. (i) Casey, C. P.; Jordan, R. F.; Rheingold, A. L. Organometallics 1984, 3, 504. (j) Casey, C. P.; Nief, F. Ibid. 1985, 4, 1218. (k) Barger, P. T.; Bercaw, J. E. Ibid. 1984, 3, 278. (1) Choukroun, R.; Gervais, D.; Jaud, J.; Kalck, P.; Senocq, F. Ibid. 1986, 5, 67. (m) Ferguson, G. S.; Wolczanski, P. T. Ibid. 1985, 4, 1601. (n) Tso, C. T.; Cutler, A. R. J. Am. Chem. Soc. 1986, 108, 6069. (o) Ortiz, J. V. Ibid. 1986, 108, 550 . (p) Sternal, R. S.; Sabat, M.; Marks, T. J. Ibid. 1987, 109, 7920. (q) Sternal, R. S.; Marks, T. J. Organometallics 1987, 6, 2621. (r) Bullock, R. M.; Casey, C. P. Acc. Chem. Res. 1987, $20,167$.

[^1]: (2) (a) Baker, R. T. K., Tauster, S. J., Dumestic, J. A., Eds. Strong Metal-Support Interactions; American Chemical Society: Washington, DC 1986. (b) Imelik, B., Naccache, C., Coudurier, G., Praliaud, H., Meriaudeau, P., Gallezot, P., Martin, G. A., Verdrine, J. C., Eds. Metal-Support and Metal-Additive Effects in Catalysis; Elsevier: New York, 1982.
 (3) For recent examples, see: (a) Mori, T.; Masuda, H.; Imai, H.; Taniguchi, S.; Miyamoto, A.; Hattori, T.; Murakami, Y. J. Chem. Soc., Chem. Commun. 1986, 1244. (b) Iwasawa, Y.; Sato, H. Chem. Lett. 1985, 507. (c) Doi, Y.; Miyake, H.; Soga, K. J. Chem. Soc., Chem. Commun. 1987, 347. (d) Rieck, J. C.; Bell, A. T. J. Catal. 1986, 99, 262. (e) Vannice, M. A.; Twu, C. C. Ibid. 1983, 82, 213. (f) Vannice, M. A.; Sudhakar, C. J. Phys. Chem. 1984, 88, 2429.

[^2]: (4) (a) Herrmann, W. A. Adv. Organomet. Chem. 1982, 20, 159. (b) Masters, C. Ibid. 1979, 19, 63. (c) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1982, 21, 117. (d) Holton, J.; Lappert, M. F.; Pearce, R.; Yarrow, P. I. W. Chem. Rev. 1983, 83, 135. (e) Casey, C. P.; Audett, J. D. Ibid. 1986, 86, 339. (f) Muetterties, E. L. Ibid. 1982, II, 283.
 (5) (a) Mackenzie, P. B.; Ott, K. C.; Grubbs, R. H. Pure Appl. Chem 1984, 56, 59. (b) Mackenzie, P. B.; Coots, R. J.; Grubbs, R. H., submitted to publication. (c) Park, J. W.; Mackenzie, P. B.; Schaefer, W. P.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 6402 .

[^3]: (6) (a) Geoffroy, G. L.; Bassner, S. L. Adv. Organomet. Chem. 1988, 28, 1. (b) Morrison, E. D.; Steinmetz, G. R.; Geoffroy, G. L.; Fultz, W. C.; Rheingold, A. L. J. Am. Chem. Soc. 1983, 105, 4104; 1984, 106, 4783. (c) Morrison, E. D.; Geoffroy, G. L.; Rheingold, A. L. Ibid. 1985, 107, 254; 1985, 107, 3541 . (d) Lin, Y. C.; Calabrese, J. C.; Wreford, S. S. Ibid. 1983, 105 , 1679. See also ref $5 a$
 (7) Brady, R. C.; Pettit, R. J. Am. Chem. Soc. 1980, 102, 6181; 1981, 103, 1287.

[^4]: (8) (a) Ozawa, F.; Kurihara, K.; Yamamoto, T.; Yamamoto, A. J. Organomet. Chem. 1985, 279, 233. (b) Ozawa, F.; Kurihara, K.; Fujimori, M.; Hidaka, T.; Toyashima, T.; Yamamoto, A. Organometallics, in press.
 (9) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 4th ed.; Wiley: New York, 1981.

[^5]: (10) Pregosin, P. S.; Kunz, R. W. ${ }^{31}$ P and ${ }^{13}$ C NMR of Transition Metal Phosphine Complexes; Springer-Verlag: Berlin, 1979.

[^6]: (20) (a) Ho, S. C. H.; Straus, D. A.; Armantrout, J.; Schaefer, W. P.; Grubbs, R. H. J. Am. Chem. Soc. 1984, 106, 2210. (b) Ho, S. C. H. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1986.
 (21) Weinstock, I.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. Soc. 1986, 108, 8298.

[^7]: (27) Ruddick, J. D.; Shaw, B. L. J. Chem. Soc. A 1969, 2801.

[^8]: (28) Waters, J. A.; Mortimer, G. A. J. Organomet. Chem. 1970, 22, 417.
 (29) These NMR data were in fair agreement with those of an authentic sample prepared from $\left[\left(\eta^{3}-2-m e t h y l a l l y l\right) \mathrm{Pd}(\mu-\mathrm{Cl})\right]_{2}$ and PMe_{3} : Dent, W. T.; Long, R.; Wilkinson, A. J. J. Chem. Soc. 1964, 1585.

[^9]: (30) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, U.K., 1974; Vol. IV, pp 71 and 149.
 (31) Equation 3 in: Larson, E. C. Acta Crystallogr. 1967, 23, 664.

